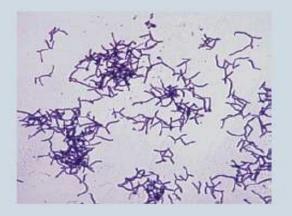
Corynebacterium species and Rhodococcus equi

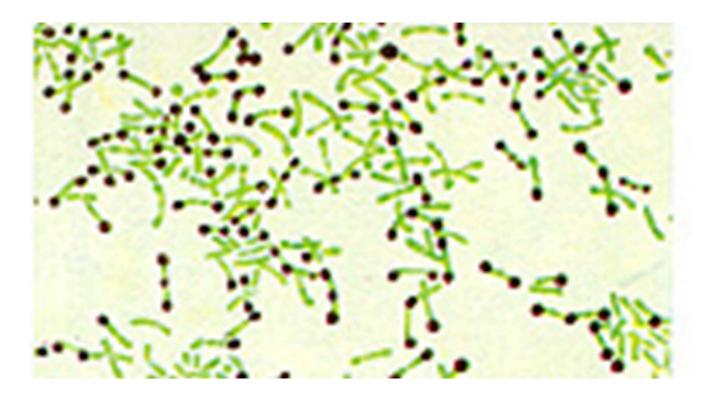

> Dr. Rasha Munther Department of Microbiology Vet.Med.College University of Basra

Corynebacterium species and Rhodococcus equi

Clinically important Gram positive bacilli

- Spore forming
- 1. Bacillus
- 2. Clostridium
- Non-spore forming
- 1. Corynebacterium
- 2. Listeria
- 3. Lactobacillus

- Bacilli with branching filaments
- 1. Actinomyces
- 2. Nocardia



Corynebacterium species

- Corynebacterium bovis
- <u>Scientific classification</u>
- Kingdom: <u>Bacteria</u>
- Phylum: <u>Actinobacteria</u>
- Order: <u>Actinomycetales</u>
- Family: Corynebacteriaceae
- Genus: <u>Corynebacterium</u>
- Species: C. bovis

General characteristic

• The Corynebacterium are small pleomorphic Gram positive rods ; that occur in rod ,coccid, club and filamentous shapes.

Corynebacterium species

Changes in Nomenclature

Previous Name

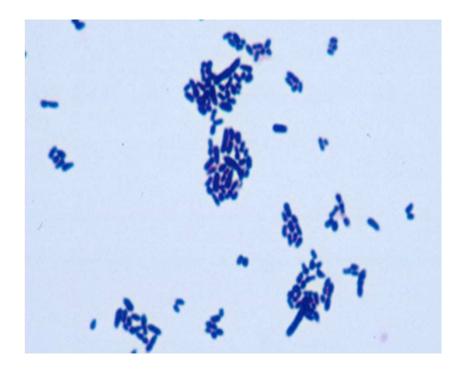
Corynebacterium equi Corynebacterium murium Corynebacterium ovis Corynebacterium pyogenes Corynebacterium suis C. renale type I C. renale type II C. renale type III

Present NameRhodococcus equiC. kutscheriC. pseudotuberculosisActinomyces pyogenes (Chapter 11)Eubacterium suis (Chapter 16)C. renaleC. pilosumC. cystitidisgroup

Corynebacterium and Rhodococcus species

- 1. Corynebacterium diphtheria
- 2. C. Bovis
- 3. C. Pseudotuberculosis
- 4. Rhodococcus equi

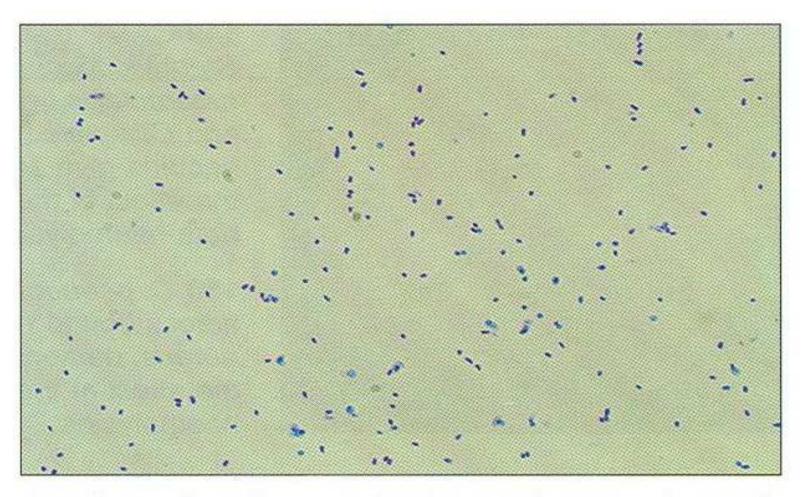
Corynebacterium diphtheria


 Corynebacterium diphtheria causes man diphtheria are commonly called diptheroids (by Loffler 1844)

General characteristics

- The genus Corynebacterium is closely related to the genera Mycobacterium according to chemical composition of cell walls (Mycolic acid)
- Mycolic acids: Present in cell wall
- Stained smears from animal tissues often reveal groups of cells in parallel (palisades) or cells at sharp angles to each other (Chinese letters.

General characteristics


- The Corynebacterium are non-spore forming,
- non -acid fast,
- catalase-positive,
- facultative anaerobic
- and the animal pathogens are non motile.

General characteristics

• Rhodococcus equi can appear as a Gram positive coccus or as a rod. Its capsulated and sometimes weakly acid-fast

R. equi in a Gram-stained smear from a colony with coccal forms predominating. (×1000)

Corynebacterium is pyogenic bacteria causing a variety of suppurative conditions.

- Corynebacterium bovis is a pathogenic bacterium that causes
- 1. subclinical mastitis in cattle
- 2. pyelonephritis in cattle.

C. bovis is spread from cow to cow most commonly through improper milking technique. However, it is usually a mild infection resulting in an elevated somatic cell count.

C. bovis

- It is a lipophilic bacterium : produced lipophilic enzyme.
- is the only pathogenic Corynebacterium species that does not produce urease.

- C. Pseudotuberculosis is an important animal pathogen.
- It is the etiological agent of a disease that is commonly called Caseous lymphadenitis (CLA) or cheesy gland.

- The virulence of *C. Pseudotuberculosis* is attributed to the:
- 1. hemolytic toxin (phospholipase)
- 2. cell wall lipids.

Rhodococcus equi

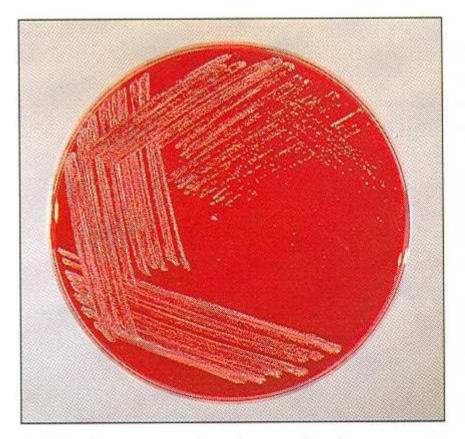
- *R.equi* can survive intrcellularly through suppression of phagolysosomal fusion.
- The bacterium can multiply in soil enriched with equine faeces and may be a commensal in the intestine of horse.

- The pathogenesis of *R. equi* is attributed to :
- It produces (R. equi factors: phospholipase c and cholesterol oxidase).
- capsule and
- cell wall constituents probably play a part in the pathogenesis / Suppurative bronchopneumonia in foals, caused by *R.equi*, increases in prevalence where high stocking rates occur.

• The main disease of *Corynebacterium*

Species	Animals	Disease
Corynebacterium bovis	Cattle	Uncertain pathogenesis
C. Pseudotuberculosis	Sheep ,goats	Caseous lymphadenitis
C. renal	Cattle	Pyelonephritis and cystitis
R.equi	Foals	Suppurative bronchopneumonia

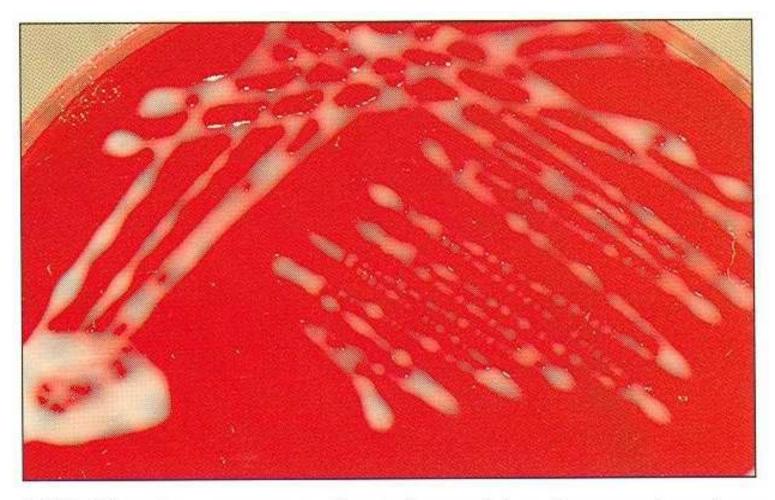
Laboratory diagnosis


1-Specimens :

- Pus ,exudates from suppurative conditions
- Mid-stream urine for isolation of *C. renal*

2-Direct microscopy

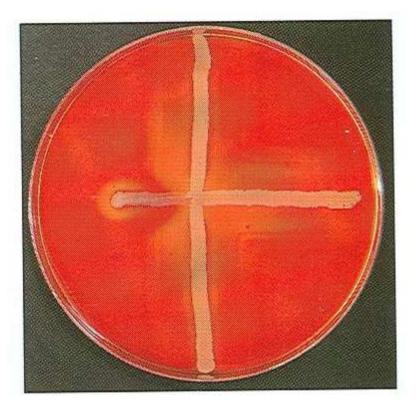
3-Isolation

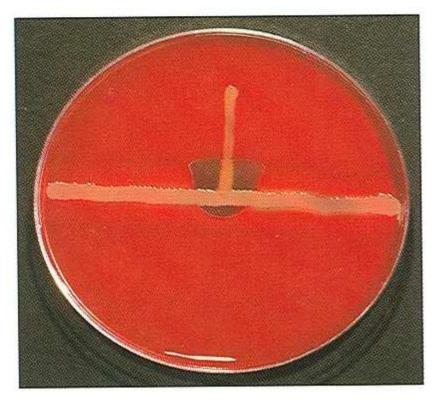

- For routine isolation Sheep or ox blood agar is used with macConkey agar to detect the gram negative contaminants that may be present.
- Rhodococcus equi produced pigments on nutrient agar after 48hr

C. pseudotuberculosis: small, white and dry colonies on sheep blood agar. Non-haemolytic at 24 hours' incubation (*see* **143**).

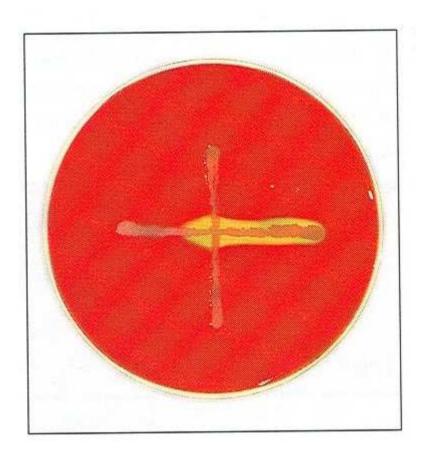
C. pseudotuberculosis on sheep blood agar demonstrating haemolysis after 72 hours' incubation.

145 *Rhodococcus equi* on sheep blood agar showing the typical mucoid colonies (4-day culture). The salmonpink pigmentation is not easily seen against a red background.


Rhodococcus equi on nutrient agar (4-day culture) demonstrating the mucoid colonies and salmon-pink pigmentation.


R. equi on pigment-enhancing medium after 48 hours' incubation, showing the typical (but enhanced) pigment and mucoid colonies.

4-CAMP tests


The CAMP test is a test to identify Group B β -streptococci based on their formation of substance (CAMP factor) that enlarges the area of hemolysis formed by β -hemolysin from *Staphylococcus aureus*. It is frequently used to identify Listeria spp. CAMP tests can be also used as quick test for *C. . Pseudotuberculosis , R.equi, C. renal* interacting with beta-hemolysis of Staphylococcus aureus the results are as follows:

Corynebacterium sp.	beta-hemolysis of <i>Staphylococcus</i>		
	AUreus		
C. Pseudotuberculosis	Inhibition		
R.equi	Enhancement		
C. renal	enhancement		

150 *C. pseudotuberculosis* drawn across (left to right) *Staphylococcus aureus,* demonstrating inhibition of the effect of the staphylococcal haemolysins. **151** CAMP test with *R.equi* against *S. aureus* (horizontal) showing the typical shovel-shaped enhancement of the effect of the staphylococcal betahaemolysin that tends to extend to the opposite side of the *S. aureus* streak.

152 *C. pseudotuberculosis* (horizontal) drawn across *R. equi* (left to right) demonstrating synergistic haemolysis.

5-Biochemical test:

The main biochemical test includes:

- 1-Beta-hemolysis
- 2-Aesculin hydrolysis
- 3-Nitrate reduction
- 4-urease
- 5-Casein digestion

6- carbohydrate fermentation (glucose, maltose, sucrose)

	C. bovis	C. kutscheri	C. pseudo- tuberculosis	C. renale group	R. equi
Beta-haemolysis	-	V	+	-	-
Aesculin hydrolysis	-	+	-	-	-
Nitrate reduction	-	+	۷*	V	+
Urease	-	+	+ (>18 hours)	+ (<1 hour)	+ (>18 hours)
Casein digestion		-	-	V	-
Glucose	+	+	+	+	-
Maltose	-	+	+	_	-
Sucrose	_	+	-	<u> </u>	-

 Table 30. Differentiation of corynebacteria and Rhodococcus equi.

+ = positive reaction; - = negative; v = variable; v^{*} = equine strains positive and ovine strains negative.

References and Textbooks

Quinn PJ, Cater ME, Markey BK, Carter GR". In: clinical Veterinary Microbiology .2004; 2nd ed.

Thank you